GBGs ennen

USN

18MAT11

First Semester B.E. Degree Examination, Feb./Mar. 2022 Calculus and Linear Algebra

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Show that the curves $\mathrm{r}=\mathrm{ae}^{\theta}$ and $\mathrm{re} \mathrm{e}^{\theta=\mathrm{b} \text { cut orthogonally. }}$
(06 Marks)
b. For the curve, $y=\frac{a x}{a+x}$ show that $\left(\frac{2 \rho}{a}\right)^{2 / 3}=\left(\frac{x}{y}\right)^{2}+\left(\frac{y}{x}\right)^{2}$
(06 Marks)
c. Show evolute of the Ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ is $(\mathrm{xa})^{2 / 3}+(\mathrm{yb})^{2 / 3}=\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)^{2 / 3}$
(08 Marks)

2 a. With usual notations prove that $\tan \phi=\mathrm{r} \frac{\mathrm{d} \theta}{\mathrm{dr}}$
(06 Marks)
b. Find the radius of curvature of the curve $r^{2}=a^{2} \sec 2 \theta$.
(06 Marks)
c. Find the angle between the curves $\mathrm{r}=\mathrm{a} \log \theta, \mathrm{r}=\frac{\mathrm{a}}{\log \theta}$.
(08 Marks)

Module-2

3 a. Obtain Maclaurin's series expansion of $\log (1+\cos x)$ upto the term containing x^{4}. (06 Marks)
b. Evaluate $\underset{\mathrm{x} \rightarrow 0}{\mathrm{Lt}}\left(\frac{\mathrm{a}^{\mathrm{x}}+\mathrm{b}^{\mathrm{x}}+\mathrm{c}^{\mathrm{x}}+\mathrm{d}^{\mathrm{x}}}{4}\right)^{1 / \mathrm{x}}$
c. Find the extreme values of the function $f(x, y)=x^{3}+3 x y^{2}-3 x^{2}-3 y^{2}+4$.
(07 Marks)
(07 Marks)

OR

4 a. If $u=x^{2}+y^{2}+z^{2}, x=e^{2 t}, y=e^{2 t} \cos 3 t, z=e^{2 t} \sin 3 t$ then find $\frac{d u}{d t}$.
(06 Marks)
b. The temperature T at any point (x, y, z) in space is $T=400 \mathrm{xyz}^{2}$. Find the highest temperature at the surface of the unit sphere $x^{2}+y^{2}+z^{2}=1$.
(07 Marks)
c. If $u=x^{2}-2 y^{2}, v=2 x^{2}-y^{2}$ where $x=r \cos \theta, y=r \sin \theta$ then show that

$$
\frac{\partial(\mathrm{u}, \mathrm{v})}{\partial(\mathrm{r}, \theta)}=6 \mathrm{r}^{3} \sin 2 \theta
$$

(07 Marks)

Module-3

5 a. Evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} d x d y$ by changing the order of integration.
(06 Marks)
b. Find by double integration, volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
(07 Marks)
c. With usual notations, show that the relation between Beta function and Gamma function is

$$
\begin{equation*}
\beta(\mathrm{m}, \mathrm{n})=\frac{\gamma(\mathrm{m}) \cdot \gamma(\mathrm{n})}{\gamma(\mathrm{m}+\mathrm{n})} \tag{07Marks}
\end{equation*}
$$

OR

6 a. Evaluate $\int_{0}^{4} \int_{0}^{2 \sqrt{z}} \int_{0}^{\sqrt{4 z-x^{2}}} d y d x d z$

b. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)} \mathrm{dxdy}$ by changing into polar coordinates.

c. Prove that $\int_{0}^{\pi / 2} \sqrt{\sin \theta} d \theta \cdot \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{\sin \theta}}=\pi$

Module-4

7 a. Solve $\frac{d y}{d t}+y \tan x=y^{3} \sec x$
b. Show that the family curves $y^{2}=4 a(x+a)$ is self orthogonal.
(06 Marks)
c. Solve $x^{2} p^{2}+x y p-6 y^{2}=0$ by solving for p.

8 a. Solve $\left(x^{2}+y^{3}+6 x\right) d x+x y^{2} d y=0$.
(06 Marks)
b. If the air is maintained at $30^{\circ} \mathrm{C}$ and the temperature of the body cools from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 12 minutes, find the temperature of the body after 24 minutes.
(07 Marks)
c. Solve $y^{2}(y-x p)=x^{4} p^{2}$ using substitution $X=1 / x$ and $Y=1 / y$.
(07 Marks)

Module-5

9 a. Find the rank of the matrix

$$
\left[\begin{array}{cccc}
2 & 1 & 3 & 5 \\
4 & 2 & 1 & 3 \\
8 & 4 & 7 & 13 \\
8 & 4 & -3 & -1
\end{array}\right] \text { by elementary transformations. }
$$

(06 Marks)
b. Apply Gauss Jordan method to solve the system of equations
$2 x+y+z=10,3 x+2 y+3 z=18, x+4 y+9 z=16$.
(07 Marks)
c. Find the largest eigen value and the corresponding eigen vector of the matrix
$\mathrm{A}=\left[\begin{array}{ccc}1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5\end{array}\right]$ by Rayleigh's power method. Perform four iterations. Take initial
vector as $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\mathrm{T}}$.
(07 Marks)

10 a. Investigate the values of λ and μ so that the equations
$2 x+3 y+5 z=9, \quad 7 x+3 y-2 z=8, \quad 2 x+3 y+\lambda z=\mu \quad$ have
(i) a unique solution, (ii) infinitely many solutions (iii) no solution.
(06 Marks)
b. Use the Gauss-Seidel iterative method to solve the system of equations $5 \mathrm{x}+2 \mathrm{y}+\mathrm{z}=12$, $x+4 y+2 z=15, x+2 y+5 z=20 . \quad$ Carryout four iterations, taking the initial approximation to the solution as $(1,0,3)$.
(07 Marks)
c. Diagonalize the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$. Hence determine A^{4}.
(07 Marks)

